the long and short of open defecation

how much can observational data tell us about sanitation and child height?

Dean Spears – r.i.c.e. & Delhi School of Economics
the importance of development in the first two years of life

one: why height?
height summarizes early life development

Indian children, 2005 DHS
height and cognitive achievement

Spears (Economics and Human Biology, 2011)
if we know about the average height of a population, we know something important about human development
two: statistical accounting for international differences

resolving an Asian enigma?
Fig. 2. Women’s height and real per-capita income.

Height, health, and development

Angus Deaton†
the Asian enigma

why are children in India shorter, on average, than children in sub-Saharan Africa who are poorer, on average?
$R^2 = 54\%$
similar omitting world regions

omits low density omits high density
a double threat: open defecation amid high population density
returning to the Asian enigma

• why are children in India shorter, on average, than children in sub-Saharan Africa?

• individual-level data from pooling 28 Demographic and Health Surveys

• same dataset and sample used in an important recent paper by Jayachandran and Pande (2013)

 – this a different dataset from the first version of my paper; that works, too
a closer look at India

three: zooming in for causal identification
evidence from India’s TSC (2001-2011)

• government program in the 2000s that built rural latrines and incentivized local governments to motivate people to use them

• cash prize with discontinuity \rightarrow effect on IMR
 – Bozzoli, et al (2009);
 Hatton (2013): IMR \rightarrow height

• differential roll-out in different places
regression strategy:
IHDS cross section as a panel of births
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>rural</td>
<td>rural</td>
<td>rural</td>
<td>rural</td>
<td>rural</td>
<td>rural</td>
<td>rural</td>
</tr>
<tr>
<td>%s included (months)</td>
<td>0-59</td>
<td>0-59</td>
<td>0-59</td>
<td>0-59</td>
<td>0-59</td>
<td>0-59</td>
<td>0-59</td>
</tr>
<tr>
<td>C household latrines per capita</td>
<td>8.582*</td>
<td>6.640†</td>
<td>7.682†</td>
<td>6.323†</td>
<td>6.302†</td>
<td>6.216†</td>
<td>10.335*</td>
</tr>
<tr>
<td>(3.815)</td>
<td>(3.651)</td>
<td>(4.466)</td>
<td>(3.656)</td>
<td>(3.670)</td>
<td>(3.686)</td>
<td>(4.331)</td>
<td></td>
</tr>
<tr>
<td>% of program mean</td>
<td>0.20</td>
<td>0.16</td>
<td>0.18</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.24</td>
</tr>
<tr>
<td>% of baseline std. dev.</td>
<td>0.27</td>
<td>0.21</td>
<td>0.24</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.33</td>
</tr>
<tr>
<td>Trt fixed effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ur of birth fixed effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>? (mo.) × sex indicators</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Te × year fixed effects</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Household controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ling 8-11 height z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.182***</td>
<td>0.195***</td>
</tr>
<tr>
<td>(0.044)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling 8-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.536***</td>
<td>-0.602***</td>
</tr>
<tr>
<td>(0.119)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.138)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
panel of Indian districts: NFHS 1 to 2

• did Indian districts where open defecation declined by more between the first and second DHS experience a greater increase in child height, on average?

• district fixed effects account for what is constant and different between districts
 – is this too much? doesn’t that variation matter?

• constructed district and PSU average open defecation rates from household recodes
panel of Indian districts: NFHS 1 to 2 child height-for-age z-score, under 3

All specifications include district, year, and age-in-months by sex fixed effects.
rice’s follow-up work in India

• effect on child cognitive achievement (Spears & Lamba)
• effect on calorie consumption (Duh & Spears)
• effect of childhood exposure on adult wages (Lawson, Spears, & Gupta)
• effect on child and maternal haemoglobin levels (Coffey)
• explanation of Hindu-Muslim child mortality puzzle (Geruso & Spears)
where does sanitation matter?
how does this influence our thinking about cause and effect?

four: sanitation & population density
sanitation should matter more where people live nearer one another’s’ feces

- combine all DHS surveys since Phase II
 - around one million live births
 - merge with population density at level of sub-national region (v024 – 1,800 of these)
- sanitation interacts with population density to predict IMR and child height
 - **robustly:** adding controls & FEs changes little
 - **uniquely:** other measures of SES don’t interact

Hathi, Haque, Pant, Gupta, Vyas, Coffey, & Spears, *in progress*
population density and effect of open defecation on IMR

Hathi, Haque, Pant, Gupta, Vyas, Coffey, & Spears, in progress
falsification: other local SES variables do not similarly interact with density
two distributions with much overlap...
but what do intervention studies study?

five: epidemiology and economics
economics vs. epidemiology?
... or, Dean attempts stand up comedy

• a standard stereotype: epidemiologists only look at small samples, only do RCTs, and only ever show you one regression model (probably with mysterious omissions and/or arrows)

• ... in fact, the two disciplines have overlapping distributions over many dimensions

• and I’ve personally learned much from interdisciplinary discussions and even collaborations
Bradford Hill criteria sound familiar to an applied microeconomist

- **temporality** sounds a lot like Granger causality, fixed effects, or event studies
- **specificity** sounds a lot like exogeneity
- **plausibility** sounds a lot like theoretical foundation
- **consistency** sounds a lot like robustness
the biggest average difference may be over intervention studies

• yes, economists like to study policy changes
 – (which may or may not be done by the researcher)

• ... but we’re equally happy to study exogenous differences in weather, close election outcomes, long-ago history, and incidental implications of policies or rules that weren’t really the point
 – unnatural experiments? (proud, not apologetic!)

• serious point: assessing whether sanitation needs to change ≠ learning how to change it
 – and even if these slides have offered a case that sanitation in India needs to change, I have said nothing about how
are intervention studies a special dilemma for sanitation research?

• **this matters:** many newspapers and policy-makers in India know about the recent Cochrane review’s conclusion that there is little evidence for an effect of “WASH” on nutrition
 – few recognize that the review only considered **intervention** studies
 – how are we biasing our answer if we privilege intervention studies? (too bad for John Snow)
 – different strengths: what is best depends on the question!
are intervention studies a special dilemma for sanitation research?

- a special, unlucky dilemma: sanitation is hard to change in India, where effect sizes may be large

- intervention \rightarrow sanitation \rightarrow health effect
 smaller in India smaller elsewhere

- “first stage” problem: many people in rural north India simply don’t want to use a latrine
 - there is every reason to welcome a randomized intervention study that has a big first stage!
 - both arrows big in Bangladesh? WASH Benefits takes the first stage astoundingly seriously